•••••••

Vidyamandir Classes SINCE 1986 IIT JEE | MEDICAL | FOUNDATION SAMPLE PAPERS National National Admission Test **For Students** Going to Class 10th 3 Year Program FOUNDATION

Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.

IIT JEE | MEDICAL | FOUNDATION

Sample Paper – 3 Year Program

NATIONAL ADMISSION TEST

Duration: 2.5 Hrs

Maximum Marks: 265

CODE

PAPER SCHEME:

- The paper contains 45 Objective Type Questions divided into three sections: Section I, Section II and Section III.
- Section I contains 5 Multiple Choice Questions (1-5) based on Mental Aptitude. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section II contains 25 Multiple Choice Questions (6-30) based on Mathematics. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section III contains 15 Multiple Choice Questions (31-45) based on Science. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME :

- Section I : For each question, 5 marks will be awarded for correct answer and -1 negative marking for incorrect answer.
- Section II : For each question, 6 marks will be awarded for correct answer and -1 negative marking for incorrect answer.
- Section III : For each question, 6 marks will be awarded for correct answer and -1 negative marking for incorrect answer.

GENERAL INSTRUCTIONS :

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill your Name, Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space provided in the ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

SUGGESTIONS:

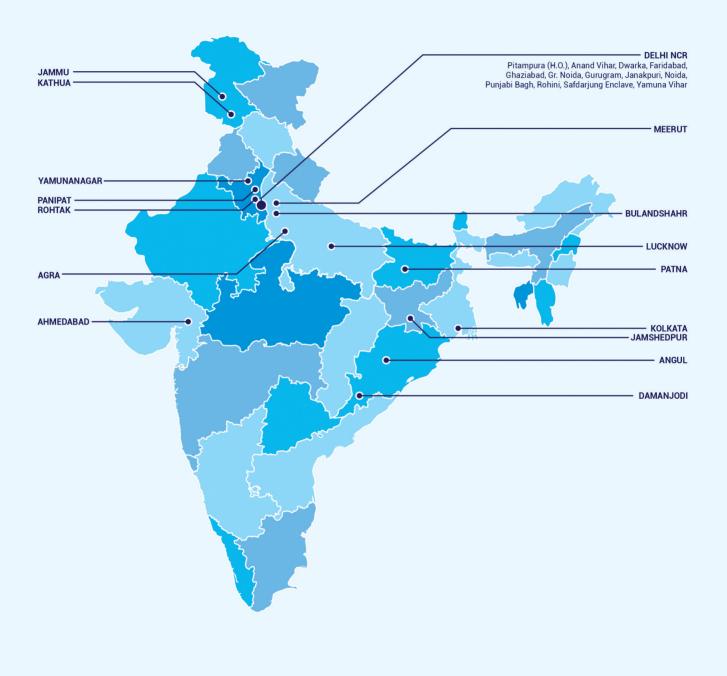
- Before starting the paper, spend 2-2.5 minutes to check whether all the pages are in order and report any issues to the invigilator immediately.
- Try to attempt the Sections in their respective order.
- Do not get stuck on a particular question for more than 2 to 2.5 minutes. Move on to a new question as there are 45 questions to solve.

SECTION – I | MENTAL APTITUDE

1.	In a certain code language, if the word "ADDRESS" is coded as ZCCQDRR, then how will you code								
	the word "BUILDING" in that language ?								
		KCHMF (B)	ATHLCHMF	(C)	ATHKDHMF	(D)	ATHLDHNF		
2.	If "SQUARE"	= 87 and "REC	TANGLE" $= 94$,	then wh	at is the value of	F"ROM	BUS" ?		
	(A) 96	(B)	94	(C)	89	(D)	97		
3.	5 children - P,	, Q , R , S and T	are given ranks b	ased on	an essay writing	g compe	tition. Neither S nor Q		
	got the best rank. P has exactly one person who got a better rank than him. R is two ranks better than								
	<i>T</i> . Who got the	e third lowest ra	nk?						
	$(\mathbf{A}) \qquad R$	(B)	S	(C)	Q	(D)	Т		
4	5 8 1	LO							
4.	30 72	?							
			00		120		120		
-	(A) 110	(B)	90 	(C)	120	(D)	130 H		
5.				is right a	and walks a furth	ner 8 <i>km</i>	<i>i</i> . How far and in what		
		from the startin	g point ?		11 km approx,	S North a	oct		
		approx, North approx, North-	ant	(B) (D)	14 <i>km</i> approx,				
	(C) 10 km	approx, North-	cast	(D)	14 km approx,	Norui-e	ast		
	SECTION – II MATHEMATICS								
		51		VIAIN	EIVIATICS				
					EIVIATICS				
6.	Let $x = 2 + \sqrt{3}$		of $x^2 + \frac{1}{x^2}$ is :		FOU				
6.		$\frac{1}{3}$, then the value	of $x^2 + \frac{1}{x^2}$ is :		FOUN	(D)	10		
	(A) 12	, then the value (B)	of $x^2 + \frac{1}{x^2}$ is : 14	(C)	16	(D)	10		
6. 7.	(A) 12 If $p(x) = x^4 - x^4$	\vec{B} , then the value (B) $-k^2x^2 + 3x - k$, t	of $x^2 + \frac{1}{x^2}$ is : 14 hen the value of x^2	(C) k' for w	16 hich $x + k$ is a fa	ctor of p	p(x), is :		
7.	(A) 12 If $p(x) = x^4 - (A)$ 1	\vec{B} , then the value (\mathbf{B}) $-k^2x^2 + 3x - k$, t (\mathbf{B})	of $x^2 + \frac{1}{x^2}$ is: 14 hen the value of x^2	(C) k' for w (C)	16 hich $x + k$ is a fa				
	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is	B , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9	of $x^2 + \frac{1}{x^2}$ is: 14 hen the value of x^2 -1 y = 10x - 12, the	(C) k' for w (C) n 'α' is c	16 hich $x + k$ is a fa 0 equal to :	(D)	p(x), is : 2		
7. 8.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1	\vec{B} , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B)	of $x^2 + \frac{1}{x^2}$ is: 14 hen the value of $x^2 - 1$ y = 10x - 12, the 2	(C) k' for w (C) n 'a' is c (C)	16 hich $x + k$ is a fa 0 equal to : 3	(D)	p(x), is : 2 4		
7.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1	B , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B) 0 numbers is '20	of $x^2 + \frac{1}{x^2}$ is : 14 hen the value of ' -1 y = 10x - 12, the 2 0'. If 5 is subtract	 (C) k' for w (C) n 'α' is α (C) ted from 	16 hich $x + k$ is a fa 0 equal to : 3 every number, t	(D) (D) (D)	p(x), is : 2 4 new mean is equal to:		
7. 8.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10	B , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B) 0 numbers is '20 (B)	of $x^2 + \frac{1}{x^2}$ is : 14 hen the value of ' -1 y = 10x - 12, the 2 0'. If 5 is subtract 12	 (C) k' for w (C) n 'α' is a (C) ted from (C) 	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16	(D) (D) (D) hen the (D)	p(x), is : 2 4 new mean is equal to: 15		
7. 8.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10 If each edge of	B , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B) 0 numbers is '20 (B) f a cuboid of sur	of $x^2 + \frac{1}{x^2}$ is : 14 hen the value of ' -1 y = 10x - 12, the 2 0'. If 5 is subtract	 (C) k' for w (C) n 'α' is a (C) ted from (C) 	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16	(D) (D) (D) hen the (D)	p(x), is : 2 4 new mean is equal to: 15		
7. 8. 9.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10	B , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B) 0 numbers is '20 (B) f a cuboid of sur	of $x^2 + \frac{1}{x^2}$ is : 14 hen the value of ' -1 y = 10x - 12, the 2 0'. If 5 is subtract 12	 (C) k' for w (C) n 'α' is a (C) ted from (C) 	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16	(D) (D) (D) hen the (D)	p(x), is : 2 4 new mean is equal to: 15		
7. 8. 9.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10 If each edge of (A) 212cm	B , then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B) 0 numbers is '2 (B) f a cuboid of sum n^2 (B)	of $x^2 + \frac{1}{x^2}$ is: 14 hen the value of $x^2 - 12$, the 2 0'. If 5 is subtract 12 face area $54cm^2$ $216cm^2$	(C) k' for w (C) $n' \alpha'$ is c (C) ted from (C) is double (C)	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16 ed, then surface $218cm^2$	(D) (D) (D) hen the (D) area of r	p(x), is : 2 4 new mean is equal to: 15 new cuboid is :		
7. 8. 9. 10.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10 If each edge of (A) 212cm If $\sqrt{13 - a\sqrt{10}}$	(B) (B) (C) (C) (C) (C) (C) (C) (C) (C	of $x^2 + \frac{1}{x^2}$ is : 14 hen the value of $x^2 - 12$, the 2 0'. If 5 is subtract 12 face area $54cm^2$	(C) k' for w (C) $n' \alpha'$ is c (C) ted from (C) is double (C) ero of th	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16 ed, then surface = $218cm^2$ the polynomial :	(D) (D) (D) hen the (D) area of r	p(x), is : 2 4 new mean is equal to: 15 new cuboid is :		
7. 8. 9. 10.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10 If each edge of (A) 212cm If $\sqrt{13 - a\sqrt{10}}$ (A) $x^2 - 3$	B, then the value (B) $-k^2x^2 + 3x - k$, t (B) s a solution of 9 (B) 0 numbers is '2' (B) f a cuboid of sum n^2 (B) $= \sqrt{8} + \sqrt{5}$, ther 8x + 2	of $x^2 + \frac{1}{x^2}$ is: 14 hen the value of $x^2 - 12$, the 2 0'. If 5 is subtract 12 face area $54cm^2$ $216cm^2$	(C) k' for w (C) $n' \alpha'$ is c (C) ted from (C) is double (C) ero of th (B)	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16 ed, then surface $218cm^2$ the polynomial : $x^2 - 7x + 12$	(D) (D) (D) hen the (D) area of r	p(x), is : 2 4 new mean is equal to: 15 new cuboid is :		
7. 8. 9. 10.	(A) 12 If $p(x) = x^4 - (A)$ 1 If $(2\alpha - 1, \alpha)$ is (A) 1 The mean of 1 (A) 10 If each edge of (A) 212cm If $\sqrt{13 - a\sqrt{10}}$ (A) $x^2 - 3$	(B) (B) (C) (C) (C) (C) (C) (C) (C) (C	of $x^2 + \frac{1}{x^2}$ is: 14 hen the value of $x^2 - 12$, the 2 0'. If 5 is subtract 12 face area $54cm^2$ $216cm^2$	(C) k' for w (C) $n' \alpha'$ is c (C) ted from (C) is double (C) ero of th	16 hich $x + k$ is a fa 0 equal to : 3 every number, t 16 ed, then surface = $218cm^2$ the polynomial :	(D) (D) (D) hen the (D) area of r	p(x), is : 2 4 new mean is equal to: 15 new cuboid is :		

12.	If x^2 -	$+y^2 + z^2 = 20$ and	dx + y	+ z = 0, then xy	+ yz + z	x is equal to :		
	(A)	10	(B)	-10	(C)	8	(D)	-8
13.	The va	alue of function	p(x) = 1	$1 + x + x^2 + x^3 +$	$\dots + x^1$	$^{01} at x = -1$, is eq	ual to :	
	(A)	-1	(B)	0	(C)	1	(D)	2
14.	A pers	son sells a T.V. a	at Rs. 10	0000 making a p	rofit of 2	25% and a fridge	e at Rs. 2	20000 making a loss of
		then overall. Profit is Rs 3(200		(B)	Loss is Rs. 50	00	
	(A) Profit is Rs. 3000(C) Loss is Rs. 3000			(D)	Profit is Rs. 50			
15.	In a tri	iangle $\Delta PQR, Pq$	Q = PR a	und QR is produc	ed to S s	such that $\angle PRS$	=100° tł	then $\angle P$ is :
	(A)	20°	(B)	40°	(C)	60°	(D)	80°
16.	Two c	ones have their	volumes	in the ratio of 2	: 1 and	their heights in r	atio 1 : 2	2, then the ratio of their
	radii is (A)	s : 1 : 2	(B)	2:1	(C)	1:4	(D)	4:1
						1.4	(D)	4.1
17.	(A)			- 64 is equal to zero $\alpha - \beta = 1$		$\alpha + \beta - 1$		$\alpha + \beta + 4 = 0$
		-		-			(D)	$\alpha + \beta + 4 = 0$
18.		xpression which		factor of $x^6 - 7x$			n ^L	2.06
10	(A)	x-2	(B)	x+1		x-1		$x^2 - x + 1$
19.								olume of the cuboid is:
20	(A)	$12cm^3$	(B)	$32cm^3$			(D)	$24cm^3$
20.	(A)	20	(B)	in the series. 2, 25	5, 10, 15 (C)	26	(D)	28
21.				ite and hour han				
	(A)	3/11 hour past			(B)	4/11 hour past		
22	(C)	5/11 hour past			(D)	6/11 hour past		• • • • • •
22.								nin. to make the round des to walk both ways.
	-	ong would it tak					,	
	(A)	200 minutes	(B)	250 minutes	(C)	300 minutes	(D)	60 minutes
23.					makes	1250 revolutions	s. Distan	ce between A and B is
	(A)	 Find the radius 30 cm 	(B)	32 <i>cm</i>	(C)	28 cm	(D)	26 cm
24.		• •	-	•	ses weig	ght which are 20)% less t	than the actual weight.
	(A)	tal profit earned 30%	by him (B)	will be : 88%	(C)	37.5%	(D)	None of these
25.	If 12			-		days, then in h	ow man	y days can 8 men and
	12 wo (A)	men do the same 28 days	e piece o (B)	of work ? 24 days	(C)	25 days	(D)	30 days
26.		•		•		•		ively. If they all work
-0.			-	on of the work th		-	respect	
	(A)	1/20	(B)	1/15	(C)	7/20	(D)	1/4

27. If *H* is height, *S* is curved surface area and *V* is volume of a cone, then :


	(A)	$\pi VH^3 - SH^2$	$+V^2 = 0$		(B)	$3\pi V H^3 + V^2 =$	S^2H^2				
	(C)	$3\pi VH^3 + 9V^2$	$=S^2H^2$		(D)	$3\pi VH^3 - 9V^2$	$3\pi VH^3 - 9V^2 = S^2H^2$				
28.	least v	alue <i>m</i> is :						f greatest value of <i>m</i> to			
	(A)	3:2		4:3	(C)		(D)	2:1			
29.						mainder 4 when o					
	(A)	$p^3 + q^3 = 18$	(B)	$q^3 - p^2 = 6$	(C)	p+q=3	(D)	$q^3 - p^3 = 8$			
30.	In tria: (A) (C)	ngle ΔLMN , $\angle M$ $\angle MLN = 48^{\circ}$ $\angle MLN = 72^{\circ}$	$I = 2 \angle N$	/. P is a point on	MN such (B) (D)	the that LP bisects $\angle MLN = 60^{\circ}$ $\angle MLN = 36^{\circ}$	∠MLN	and $MN = NL$, then :			
				SECTION - I	II SC	IENCE					
31.	The m (A) (C)	olecular weight Positive non-z Unity		by empirical wei le number	ight is al (B) (D)	ways a: Fraction Integer					
32.	The pe	ercentage of an e	lement l	M is 52 in its oxi	de of mo	olecular formula	M_2O_3	. Its atomic mass is			
	about:						5				
22	(A)	45	(B)	9	(C)	18	(D)	26,986			
33.	The st (i)	ate of matter when Solid state	ere matt (ii)	er is condensed i Liquid state	s: (iii)	Gaseous state					
	(A)	(i) and (iii)	(B)	(ii) and (iii)	(C)	(i) and (ii)	(D)	(i),(ii) and (iii)			
34.	The pr (A) (B) (C) (D)	Salts with low The rate of dif	ower boi er solubi fusion o	ling points boil ilities crystallize f liquids varies		n saturated soluti	on when	n cooled			
35.	 (D) All liquids are not miscible in water Which of the following statements is not true about suspension? (A) The particles of suspension can be separated from solvent by the process of filtration. (B) When the suspension is kept undisturbed, the particles of suspension settle down. (C) A suspension is homogeneous in nature. (D) Scattering of light takes place in suspension. 										
36.		a latin word for		A 11-01 11-C		A 111 1 1 1					
25	(A)	A little room	(B)	A little life	(C)	A little brick	(D)	None of these			
37.	Free Ii (A)	Ning cells in por Robert Brown		mproved micros Robert Hooke	-	s discovered by: Leeuwenhoek	(D)	George Palade			
38.	Simple (A)	e permanent tiss Parenchyma	ues are: (B)	Collenchyma	(C)	Sclerenchyma	(D)	All of these			
39.	Cardia (A)	ic and skeletal m Voluntary and			(B)	Involuntary an	d volun	tary muscles			

	-										
	(C) Voluntary and voluntary muscles (D) Involuntary and involuntary muscles										
40.	Protein	ns are synthesize	d by:								
	(A)	Ribosomes	(B)	Plastids	(C)	Mitochondria	(D)	Nucleus			
41.	An aer	oplane moves 4	00 m tow	vards North, 300) m towa	rds West and the	n 1200	m vertically upwards.			
	Its dis	placement from	the initia	l position is :	Plastids (C) Mitochondria (D) Nucleus rds North, 300 m towards West and then 1200 m vertically upwards. bosition is : 1400 m (C) 1500 m (D) 1600 m ing with a constant velocity of 10 m/s along positive X-axis. The t external force acting upon the particle are respectively:						
	(A)	1300 m	(B)	1400 m	(C)	1500 m	(D)	1600 m			
42.	A part	icle of mass 5	kg is m	oving with a co	onstant v	elocity of 10 m	/s along	g positive X-axis. The			
	•		U	e		•					
	(A)	49 Ns, 3 N	(B)	50 Ns, 0 N	Ũ						
43.	A tunr	nel is dug along	a diame	eter of the earth	of mass	M _e and radius	R _e . The	force on a particle of			
								L L			
	<	G M _e m		G M _e m		G M _e m r		G M _e m r			
	(A)	$\frac{G M_{e}m}{R_{e}^{3}r}$	(B)	$\frac{c}{R^2 r^2}$	(C)	$\frac{1}{R_{\perp}^3}$	(D)	$\frac{c}{R_{\perp}^2}$			
		C		e		e		e			
44.	The ur	nit of relative der	nsity is:								
	(A)	$g \text{ cm}^{-3}$	(B)	kg m $^{-3}$	(C)	kgF m ^{−3}	(D)	No unit			
45.	The ra	te of change of c	lisplacen	nent is called:							
	(A)	Momentum	(B)	Speed	(C)	Velocity	(D)	Acceleration			
				L				~ <u>~</u> b			
								EIGO			
						3					
						.05					
						-50		00			
					12	FOUNT	A				
						200.					
						11					
					C.A.						
				NE							
			36								
				IMEDI							

୨୦ ୧୦ ୧୦ End of NAT Sample Paper | 3 Year ଏ ଏ ଏ

3 Year Sample Paper Answer Key									
Code-A Mapping	Code-A_Answer Key	Code-A Difficulty	Code-A Subject	Code-A Topic (Chapter)	Code-A Skill (Base)	Code-A +Ve Marks	Code-A -Ve Marks		
1	А	Easy	Mental Aptitude	Alphabet Test	Logical	5	1		
2	В	Medium	Mental Aptitude	Coding	Logical	5	1		
3	D	Difficult	Mental Aptitude	Analogy	Logical	5	1		
4	А	Easy	Mental Aptitude	Figure Matrix	Logical	5	1		
5	В	Medium	Mental Aptitude	Direction	Logical	5	1		
6	В	Easy	Mathematics	Rational Numbers	Calculation	6	1		
7	С	Easy	Mathematics	Polynomial	Conceptual	6	1		
8	В	Easy	Mathematics	Linear Equation	Conceptual	6	1		
9	D	Easy	Mathematics	Number System	Conceptual	6	1		
10	В	Easy	Mathematics	Mensuration	Memory	6	1		
11	С	Medium	Mathematics	Polynomial	Calculation	6	1		
12	В	Easy	Mathematics	Polynomial	Memory	6	1		
13	В	Easy	Mathematics	Polynomial	Conceptual	6	1		
14	С	Medium	Mathematics	Profit and Loss	Calculation	6	1		
15	А	Easy	Mathematics	Triangle	Memory	6	1		
16	В	Easy	Mathematics	Mensuration	Memory	6	1		
17	D	Easy	Mathematics	Polynomial	Memory	6	1		
18	С	Easy	Mathematics	Polynomial	Conceptual	6	1		
19	D	Easy	Mathematics	Mensuration	Memory	6	1		
20	С	Easy	Mathematics	Number System	Conceptual	6	1		
21	А	Medium	Mathematics	Lines and Angles	Conceptual	6	1		
22	А	Medium	Mathematics	Linear Equation	Calculation	6	1		
23	С	Medium	Mathematics	Linear Equation	Conceptual	6	1		
24	С	Easy	Mathematics	Profit and Loss	Application	6	1		
25	В	Medium	Mathematics	Comparing Quantities	Calculation	6	1		
26	С	Medium	Mathematics	Direct and Inverse Proportion	Calculation	6	1		
27	С	Medium	Mathematics	Mensuration	Calculation	6	1		
28	А	Easy	Mathematics	Comparing Quantities	Calculation	6	1		
29	D	Easy	Mathematics	Polynomial	Conceptual	6	1		
30	С	Easy	Mathematics	Triangle	Calculation	6	1		
31	А	Medium	Science	Atoms and Molecules	Conceptual	6	1		
32	D	Medium	Science	Atoms and Molecules	Calculation	6	1		
33	C	Easy	Science	Matter In Our Surroundings	Conceptual	6	1		
34	В	Easy	Science	Is Matter Around us Pure	Conceptual	6	1		
35	C	Easy	Science	Is Matter Around us Pure	Memory	6	1		
36	А	Moderate	Science	Cell	Conceptual	6	1		
37	C	Easy	Science	Cell	Memory	6	1		
38	D	Easy	Science	Tissues	Application	6	1		
39	В	Moderate	Science	Tissues	Conceptual	6	1		
40	А	Moderate	Science	Cell	Application	6	1		
41	А	Easy	Science	Motion	Calculation	6	1		
42	В	Easy	Science	Force	Conceptual	6	1		
43	C	Medium	Science	Gravitation	Memory	6	1		
44	D	Easy	Science	Gravitation	Conceptual	6	1		
45	С	Easy	Science	Motion	Conceptual	6	1		

VMC CENTRES ACROSS INDIA

- Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.
 Ph.: (011) 45221191 - 93
- ★ www.vidyamandir.com

vidyamandirclasses

instagram.com/vmc_learning

facebook.com/VmcLearning

blog.vidyamandir.com